Preview

NNC RK Bulletin

Advanced search

OVERVIEW OF THE HIGH-ENTROPY ALLOYS CONCEPT

https://doi.org/10.52676/1729-7885-2023-1-25-39

Abstract

The article presents a review of the results of research on high-entropy alloys, describing the principles of their formation, the basic concepts and properties of high-entropy alloys. The existing categories of the entropic alloys are listed. The effects resulting from the formation of high-entropy alloys are described: high entropy, lattice distortion, sluggish diffusion and cocktail effects. It is noted that the traditional thermodynamic representations for multicomponent alloys require additions. It is also noted that the application of Hume-Rothery rules to predict the phase composition of high-entropy alloys shows some difficulties, since it is difficult to select a large number of elements having the same type of lattice and valence. The results of the analysis of a number of parameters and conditions which, according to the researchers' opinion, affect the structural state created by high-entropy alloys, taking into account which could allow to correctly predict the formation of structures in high-entropy. Analysis of the literature data has shown that at present there is no universal parameter that could allow the correct prediction of the formation of structures in multicomponent alloys systems. Methods for the preparation of powders of high entropy alloys are presented. The results of frequently used methods of obtaining coatings on the basis of high-entropy alloys, such as laser cladding, magnetron sputtering, electrochemical deposition and thermal spraying are reviewed. Disadvantages of obtaining coatings methods are described.

About the Authors

Ye. Ye. Kambarov
Daulet Serikbayev East Kazakhstan Technical University; Nazarbayev Intellectual School of Chemistry and Biology in Ust-Kamenogorsk
Kazakhstan

Yedilzhan Ye. Kambarov.

Ust-Kamenogorsk



G. K. Uazyrkhanova
Daulet Serikbayev East Kazakhstan Technical University
Kazakhstan

Ust-Kamenogorsk



M. Rutkowska-Gorczyca
Wroclaw University of Science and Technology
Poland

Wroclaw



A. Ye. Kussainov
Daulet Serikbayev East Kazakhstan Technical University
Kazakhstan

Ust-Kamenogorsk



References

1. Quiambao K. Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions / K. Quiambao, S. McDonnell, D. Schreiber, A. Gerard, K. Freedy, P. Lu, J. Saal, G. Frankel, J. Scully // Acta Materialia. – 2019. – Vol. 164. – P. 362–376. https://doi.org/10.1016/j.actamat.2018.10.026

2. Qiu Y. Microstructural evolution, electrochemical and corrosion properties of AlxCoCrFeNiTiy high entropy alloys / Y. Qiu, S. Thomas, D. Fabijanic, A. Barlow, H. Fraser, N. Birbilis // Materials & Design. – 2019. – Vol. 170. – A. 107698. https://doi.org/10.1016/j.matdes.2019.107698

3. Joseph J. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures / J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, M. Barnett, D. Fabijanic // Wear. – 2019. – Vol. 428–429. – P. 32–44. https://doi.org/10.1016/j.wear.2019.03.002

4. Yang T. Control of nanoscale precipitation and elimination of intermediate temperature embrittlement in multicomponent high-entropy alloys / T. Yang, Y. Zhao, L. Fan, J. Wei, J. Luan, W. Liu, C. Wang, Z. Jiao, J. Kai, C. Liu // Acta Materialia. – 2020. – Vol. 189. – P. 47–59. https://doi.org/10.1016/j.actamat.2020.02.059

5. MacDonald B. Influence of phase decomposition on mechanical behavior of an equiatomic CoCuFeMnNi high entropy alloy / B. MacDonald, Z. Fu, X. Wang, Z. Li, W. Chen, Y. Zhou, D. Raabe, J. Schoenung, H. Hahn, E. Lavernia // Acta Materialia. – 2019. – Vol. 181. – P. 25– 35. https://doi.org/10.1016/j.actamat.2019.09.030

6. Wu Y. High strength NiMnFeCrAlCu multi-principal-element alloys with marine application perspective / Y. Wu, Y. Li, X. Liu, Q. Wang, X. Chen, X. Hui // Scripta Materialia. – 2021. – Vol. 202. – A. 113992. https://doi.org/10.1016/j.scriptamat.2021.113992

7. Cantor B. Microstructural development in equiatomic multicomponent alloys / B. Cantor, P. Chang, P. Knight, A. Vincent // Materials Science and Engineering: A. – 2004. – Vol. 375–377. – P. 213–218. https://doi.org/10.1016/j.msea.2003.10.257

8. Zhao Y. Heterogeneous precipitation behavior and stacking-faultmediated deformation in a CoCrNi-based medium-entropy alloy / Y. Zhao, T. Yang, Y. Tong, J. Wang, J. Luan, Z. Jiao, D. Chen, Y. Yang, A. Hu, C. Liu, J. Kai // Acta Materialia. – 2017. – Vol. 138. – P. 72–82. https://doi.org/10.1016/j.actamat.2017.07.029

9. Chang H. Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off / H. Chang, T. Zhang, S. Ma, D. Zhao, R. Xiong, T. Wang, Z. Li, Z. Wang // Materials & Design. – 2021. – Vol. 197. – A. 109202. https://doi.org/10.1016/j.matdes.2020.109202

10. Shuang S. Corrosion resistant nanostructured eutectic high entropy alloy / S. Shuang, Z. Ding, D. Chung, S. Shi, Y. Yang // Corrosion Science. - 2019. – Vol. 164. – A. 108315. https://doi.org/10.1016/j.corsci.2019.108315

11. Zhao Y. Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 highentropy alloy / Y. Zhao, H. Chen, Z. Lu, T. Nieh // Acta Materialia. – 2018. – Vol. 147. – P. 184–194. https://doi.org/10.1016/j.actamat.2018.01.049

12. Senkov O. High temperature strength of refractory complex concentrated alloys / O. Senkov, S. Gorsse, D. Miracle // Acta Materialia. – 2019. – Vol. 175. – P. 394– 405. https://doi.org/10.1016/j.actamat.2019.06.032

13. Zhang M. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding / M. Zhang, X. Zhou, X. Yu, J. Li // Surface and Coatings Technology. – 2017. – Vol. 311. – P. 321–329. https://doi.org/10.1016/j.surfcoat.2017.01.012

14. Yeh J-W. Recent progress in high-entropy alloys / J-W Yeh // Annales de Chimie - Science des Matériaux. – 2006. – Vol. 31. – P. 633–648. https://doi.org/10.3166/acsm.31.633-648

15. Todai M. Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials / M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, T. Nakano // Scripta Materialia. – 2017. – Vol. 129. – P. 65–68. https://doi.org/10.1016/j.scriptamat.2016.10.028

16. Gludovatz B. A fracture-resistant high-entropy alloy for cryogenic applications / B. Gludovatz, A. Hohenwarter, D. Catoor, E. Chang, E. George, R. Ritchie // Science. – 2014. – Vol. 345. – P. 1153–1158. https://doi.org/10.1126/science.1254581

17. Xu X. Microstructural origins for a strong and ductile Al0.1CoCrFeNi high-entropy alloy with ultrafine grains / X. Xu, P. Liu, A. Hirata, S. Song, T. Nieh, M. Chen // Materialia. – 2008. – Vol. 4. – P. 395-405. https://doi.org/10.1016/j.mtla.2018.10.015

18. Xu X. Temperature-dependent compression behavior of an Al0.5CoCrCuFeNi high-entropy alloy / X. Xu, S. Chen, Y. Ren, A. Hirata, T. Fujita, P. Liaw, M. Chen // Materialia. – 2019. – Vol. 5. – A. 100243. https://doi.org/10.1016/j.mtla.2019.100243

19. Ni C. Characterization of Al0.5FeCu0.7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding / C. Ni, Y. Shi, J. Liu, G. Huang // Optics & Laser Technology. – 2018. – Vol. 105. – P. 257-263. https://doi.org/10.1016/j.optlastec.2018.01.058

20. Gottshtain G. Fiziko-himicheskie osnovy materialovedeniya / G. Gottshtain – Мoscow: Binom, Laboratoriya znanii, 2009, – 400 p.

21. Miracle B. A critical review of high entropy alloys and related concepts / D. Miracle, O. Senkov // Acta Materialia. – 2017. – Vol. 122. – P. 448-511. https://doi.org/10.1016/j.actamat.2016.08.081

22. Vaidya M. Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying / M. Vaidya, A. Prasad, A. Parakh, B. Murty // Materials & Design. – 2017. – Vol. 126. – P. 37–46. https://doi.org/10.1016/j.matdes.2017.04.027

23. Miracle D. Exploration and development of high entropy alloys for structural applications / D. Miracle, J. Miller, O. Senkov, C. Woodward, M. Uchic, J. Tiley // Entropy. – 2014. – Vol. 16(1). – P. 494–525. https://doi.org/10.3390/e16010494

24. Kumar A. Mechanically alloyed high entropy alloys: existing challenges and opportunities / A. Kumar, А. Singh, A.Suhane // Journal of materials research and technology. – 2022. – Vol. 17. – P. 2431–2456. https://doi.org/10.1016/j.jmrt.2022.01.141

25. Tsai M-H. Physical properties of high entropy / M-H Tsai // Entropy. - 2013. – Vol. 15(12). – P. 5338–5345. https://doi.org/10.3390/e15125338.

26. Yeh J-W. Alloy Design Strategies and Future Trends in High-Entropy Alloys / Yeh J-W // The journal of the Minerals, Metals & Materials Society. – 2013. – Vol. 65. – P. 1759–1771. https://doi.org/10.1007/s11837-013-0761-6

27. Senkov O. Refractory high-entropy alloys / O. Senkov, G. Wilks, D. Miracle, C. Chuang, P. Liaw // Intermetallics. – 2010. – Vol. 18. – P. 1758–1765. https://doi.org/10.1016/j.intermet.2010.05.014

28. Senkov O. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys / O. Senkov, G. Wilks, J. Scott, D. Miracle // Intermetallics. – 2011. – Vol. 19(5). – P. 698–706. https://doi.org/10.1016/j.intermet.2011.01.004

29. Tong C-J. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements / C-J. Tong, M-R.Chen, J-W. Yeh, S-J. Lin, P-H. Lee, T-T. Shun, S-Y. Chang // Metallurgical and Materials Transactions. – 2005. – Vol. 36. – P. 1263– 1271. https://doi.org/10.1007/s11661-005-0218-9

30. Tong C-J. Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements / C-J. Tong, Y-L. Chen, J-W. Yeh, S-K.Chen, J-W. Yeh, T-T. Shun, C-H.Tsau, S-J.Lin, S-Y.Chang // Metallurgical and Materials Transactions. – 2005. – Vol. 36. – P. 881–893. https://doi.org/10.1007/s11661-005-0283-0

31. Li A. Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements / A. Li, X. Zhang // Acta Metallurgica Sinica (English Letters). – 2009. – Vol. 22. – P. 219–224. https://doi.org/10.1016/S1006-7191(08)60092-7

32. del Grosso M. Determination of the transition to the high entropy regime for alloys of refractory elements / M. del Grosso, G. Bozzolo, H. Mosca // Journal of Alloys and Compounds. – 2012. – Vol. 534. – P. 25–31. https://doi.org/10.1016/j.jallcom.2012.04.053

33. Ng C. Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy / C. Ng, S. Guo, J. Luan, S. Shi, C. Liu // Intermetallics. – 2012. – Vol. 31. – P. 165–172. https://doi.org/10.1016/j.intermet.2012.07.001

34. Lucas M. Absence of long-range chemical ordering in equimolar FeCoCrNi / M. Lucas, G. Wilks, L. Mauger, J. Munoz, O. Senkov, E. Michel, J. Horwath, S. Semiatin, M. Stone, D. Abernathy, E. Karapetrova // Applied Physics Letters. – 2012. – Vol. 100. – A. 251907. https://doi.org/10.1063/1.4730327

35. Tsai M. High-Entropy Alloys: A Critical Review / M. Tsai, J. Yeh // Materials Research Letters. – 2014. – Vol. 2(3). – P. 107–123. https://doi.org/10.1080/21663831.2014.912690

36. Yeh J-W. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi– principal elements / J-W. Yeh, S–Y. Chang, Y–D. Hong, S-K. Chen, S–J. Lin // Materials Chemistry and Physics. – 2007. – Vol. 103. – P. 41–46. https://doi.org/10.1016/j.matchemphys.2007.01.003

37. Cullity B. Elements of X-Ray Diffraction. / B.D. Cullity, S.R. Stock. – New York: Pearson, 2001. – 696 p.

38. Pearson W. A Handbook of Lattice Spacing and Structures of Metals and Alloys / W.B. Pearson. – New York: Pergamon Press, 1967. – 1446 p.

39. Lonsdale K. International Tables for X-Ray Crystallography / K. Lonsdale, N. Henry. – Birmingham: Kynoch Press, 1968. – 362 p.

40. Tsai K-Y. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys / K-Y. Tsai, M-H. Tsai, J-W. Yeh // Acta Materialia. – 2013. – Vol. 61. – P. 4887–4897. https://doi.org/10.1016/j.actamat.2013.04.058

41. Liu W. Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy / W. Liu, Y. Wu, J. He, T. Nieh, Z. Lu // Scripta Materialia. – 2013. – Vol. 68. – P. 526–529. https://doi.org/10.1016/j.scriptamat.2012.12.002

42. Hsu C. On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys / C. Hsu, C. Juan, W. Wang, T. Sheu, J. Yeh, S. Chen // Materials Science and Engineering: A. – 2011. – Vol. 528. – P. 3581–3588. https://doi.org/10.1016/j.msea.2011.01.072

43. Yeh J-W. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes / J-W. Yeh, S-K. Chen, S-J. Lin, J-Y. Gan, T-S. Chin, T-T. Shun, C-H. Tsai, S-Y. Chang // Advanced Engineering Materials. – 2004. – Vol. 6. – P. 299–303. https://doi.org/10.1002/adem.200300567

44. Shun T-T. Formation of ordered/disordered nanoparticles in FCC high entropy alloys / T-T.Shun, C-H.Hung, C-F.Lee // Journal of Alloys and Compounds. – 2010. – Vol. 493. – P. 105–109. https://doi.org/10.1016/j.jallcom.2009.12.071

45. Tsai M-H. Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy / M-H.Tsai, H. Yuan, G. Cheng, W. Xu, K-Y. Tsai, C-W. Tsai, W. Jian, C-C. Juan, W-J. Shen, M-H. Chuang, J-W. Yeh, Y. Zhu // Intermetallics. – 2013. – Vol. 32. – P. 329– 336. https://doi.org/10.1016/j.intermet.2012.07.036

46. Pogrebnyak A. The structure and properties of high-entropy alloys and nitride coatings based on them / A. Pogrebnyaka, A. Bagdasaryana, I. Yakushchenkoa, V. Beresnevb // Russian Chemistry Reviews. – 2014. – Vol. 83. – P. 1027–1061. https://doi.org/10.1070/rcr4407

47. Oates W. Configurational Entropies of Mixing in Solid Alloys // Journal of Phase Equilibria and Diffusion / W. Oates // Journal of Phase Equilibria and Diffusion. – 2007. – Vol. 28. – P. 79–89. https://doi.org/10.1007/s11669-006-9008-3

48. Swalin R. Thermodynamics of solids / R. Swalin, E. Burke, B. Chalmers, J. Krumhansl. – New York: John Wiley & Sons, 1991 – 388 p.

49. Zhang Y. Solid Solution Formation Criteria for High Entropy Alloys / Y. Zhang, Y. Zhou // Materials Science Forum. – 2007. – Vol. 561–565. – P. 1337–1339. https://doi.org/10.4028/www.scientific.net/MSF.561-565.1337

50. Senkov O. Microstructure and room temperature mechanical properties of a high-entropy TaNbHfZrTi alloy / O. Senkov, J. Scott, S. Senkova, D. Miracle, C. Woodwart // Intermetallics. – 2011. – Vol. 509. – P. 6043–6048. https://doi.org/10.1016/j.jallcom.2011.02.171

51. Gail A. Tensile Properties of high- and medium-entropy alloys / A. Gali, E. George // Intermetallics. – 2013. – Vol. 39. – P. 74–78. https://doi.org/10.1016/j.intermet.2013.03.018

52. Jiang L. Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0.5 alloy casting ingot / L. Jiang, Y. Lu, Y. Dong, T. Wang, Z. Cao, T. Li // Intermetallics. – 2004. – Vol. 44. – P. 37–43. https://doi.org/10.1016/j.intermet.2013.08.016

53. Shun T-T. Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys / T-T. Shun, L-Y. Chang, M-H. Shiu // Materials Characterization. – 2012. – Vol. 70. – P. 63–67. https://doi.org/10.1016/j.matchar.2012.05.005

54. Senkov O. A topological model for metallic glass formation / O. Senkov, D. Miracle // Journal of Non-Crystalline Solids. – 2003. – Vol. 317. – P. 34–39. https://doi.org/10.1016/S0022-3093(02)01980-4

55. Takeuchi A. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter / A. Takeuchi, N. Chen, T. Wada, Y. Yokoyama, H. Kato, A. Inoue, J. Yeh // Intermetallics. – 2011. – Vol. 19. – P. 1546–1554. https://doi.org/10.1016/j.intermet.2011.05.030

56. Marques F. Mg-containing multi-principal element alloys for hydrogen storage: A study of the MgTiNbCr0. 5Mn0. 5Ni0. 5 and Mg0. 68TiNbNi0.55 compositions / F. Marques, H. Pinto, S. Figueroa, F. Winkelmann, M. Felderhoff, W. Botta, G. Zepon // International Journal of Hydrogen Energy. – 2020. – Vol. 45. – P. 19539–19552. https://doi.org/10.1016/j.ijhydene.2020.05.069

57. Singh S. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy / S. Singh, N. Wanderka, B. Murty, U. Glatzel, J. Banhart // Acta Materialia. – 2011. – Vol. 59. – P. 182–190. https://doi.org/10.1016/j.actamat.2010.09.023

58. Yeh J-W. Alloy design strategies and future trends in high-entropy alloys / J-W. Yeh // The Journal of The Minerals, Metals & Materials Society – 2013. – Vol. 65.– P. 1759–1771. https://doi.org/10.1007/s11837-013-0761-6

59. Zhang Y. Alloy Design and Properties Optimization of High-Entropy Alloys / Y. Zhang, X. Yang, P. Liaw // The Journal of The Minerals, Metals & Materials Society. – 2012. – Vol. 65. – P. 830–838. https://doi.org/10.1007/s11837-012-0366-5

60. Zhang Y. Solid-Solution Phase Formation Rules for Multicomponent Alloys // Advanced Engineering Materials / Y. Zhang, Y. Zhou, J. Lin, G. Chen, P. Liaw // Advanced Engineering Materials. – 2008. – Vol. 10(6). – P. 534– 538. https://doi.org/10.1002/adem.200700240

61. Fang S. Relationship between the widths of supercooled liquid region and bond parameters of Mg-based bulk metallic glasses / S. Fang, X. Xiao, L. Xia, W. Li, Y. Dong // Journal of Non-Crystalline Solids. – 2003. – Vol. 321. – P. 120–125. https://doi.org/10.1016/S0022-3093(03)00155-8

62. Takeuchi A. Quantitative evaluation on critical cooling rate for metallic glasses / A. Takeuchi, A. Inoue // Materials Science and Engineering: A. – 2001. – Vol. 304–306. – P. 446–451. https://doi.org/10.1016/S0921-5093(00)01446-5

63. Yang X. Prediction of high-entropy stabilized solid-solution in multi-component alloys. / X. Yang, Y. Zhang // Materials Chemistry and Physics. – 2012. – Vol. 132. – P. 233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021

64. Mann J. Configuration Energies of the Main Group Elements / J. Mann, T. Meek, L. Allen // Journal of the American Chemical Society. – 2000. – Vol. 122. – P. 2780–2783. https://doi.org/10.1021/ja992866e

65. Guo S. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys / S. Guo, C. Ng, J. Lu, C. Liu // Journal of Applied Physics. – 2011. – Vol. 109. – A. 103505. https://doi.org/10.1063/1.3587228

66. Rahm M. Atomic and ionic radii of elements 1–96 / M. Rahm, R. Hoffmann, N. Ashcroft // Chemistry–A European Journal. – 2016. – Vol. 22. – P. 14625–14632. https://doi.org/10.1002/chem.201602949

67. Li K. Estimation of electronegativity values of elements in different valence states / K. Li, D. Xue // The Journal of Physical Chemistry A. – 2006. – Vol. 110. – P. 11332– 11337. https://doi.org/10.1063/1.1742493

68. Zhang Y. Electronegativities of elements in valence states and their applications. 1. Electronegativities of elements in valence states / Y. Zhang // Inorganic Chemistry. – 1982. – Vol. 21. – P. 3886–3889. https://doi.org/10.1021/ic00141a005

69. James A.M. Macmillan's Chemical and Physical Data / A.M. James, M.P. Lord. – Basingstoke: Macmillan Press, 1993. – 565 p.

70. Samsonov G. V. Handbook of the Physicochemical Properties of the Elements / G. V. Samsonov. – New York: Springer, 1968. – 942 p.

71. Mizutani U. Hume-Rothery rules for structurally complex alloy phases / U. Mizutani // Materials Research Society Bulletin. – 2012. – Vol. 37. – P. 169. https://doi.org/10.1557/mrs.2012.45

72. Miracle D. Topological criterion for metallic glass formation / D. Miracle, O. Senkov // Material Science and Engineering: A. – 2003. – Vol. 347. – P. 50–58. https://doi.org/10.1016/S0921-5093(02)00579-8

73. Poletti M. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems / M. Poletti, L. Battezzati // Acta Materialia. – 2014. – Vol. 75. – P. 297–306. https://doi.org/10.1016/j.actamat.2014.04.033

74. Fan Y. AlNiCrFexMo0.2CoCu high entropy alloys prepared by powder metallurgy / Y. Fan, Y. Zhang, H. Guan, H. Suo, L. He // Rare Metal Materials and Engineering. – 2013. – Vol. 42. – P. 1127–1129. https://doi.org/10.1016/S1875-5372(13)60074-0

75. Veronesi P. Microwave - Assisted preparation of high entropy alloys / P. Veronesi, R. Rosa, E. Colombini, C. Leonelli // Technologies. – 2015. – Vol. 3. – P. 182–197. https://doi.org/10.3390/technologies3040182

76. Qiu X-W. Structure and properties of AlCrFeNiCuTi six principal elements equimolar alloy / X-W. Qiu, C-X. Huang, M-J. Wu, C-G. Liu, Y-P. Zhang // Journal of Alloys and Compounds. – 2016. – Vol. 658. – P. 1–5. https://doi.org/10.1016/j.jallcom.2015.10.224

77. Colombini E. High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating / E. Colombini, R. Rosa, L. Trombi, M. Zadra, A. Casagrande, P. Veronesi // // Materials Chemistry and Physics. – 2018. – Vol. 210. – P. 78–86. https://doi.org/10.1016/j.matchemphys.2017.06.065

78. Zhang A. Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture / A. Zhang, J. Han, J. Meng, B. Su, P. Li // Materials Letters. – 2016. – Vol. 181. – P. 82–85. https://doi.org/10.1016/j.matlet.2016.06.014

79. Veronesi P. Microwave processing of high entropy alloys: A powder metallurgy approach / P. Veronesi, E. Colombini, R. Rosa, C. Leonelli, M. Garuti // Chemical Engineering and Processing: Process Intensification. – 2017. – Vol. 122. – P. 397–403. https://doi.org/10.1016/j.cep.2017.02.016

80. Holmstrom E. High entropy alloys: substituting for cobalt in cutting edge technology / E. Holmstrom, R. Lizarraga, D. Linder, A. Salmasi, W. Wang, B. Kaplan, H. Mao, H. Larsson, V. Levente // Applied Materials Today. – 2018. – Vol. 12. – P. 322–329. https://doi.org/10.1016/j.apmt.2018.07.001

81. Waseem O. The effect of Ti on the sintering and mechanical properties of refractory highentropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials / O. Waseem, J. Lee, H. Lee // Materials Chemistry and Physics. – 2018. – Vol. 210. – P. 87–94. https://doi.org/10.1016/j.matchemphys.2017.06.054

82. Tian Y. Microstructures and oxidation behavior of Al-CrMnFeCoMoW composite coatings on Ti-6Al-4V alloy substrate via high-energy mechanical alloying method / Y. Tian, Y. Shen, C. Lu, X. Feng // Journal of Alloys and Compounds. – 2019. – Vol. 779. – P. 456–465. https://doi.org/10.1016/j.jallcom.2018.11.266

83. Oleszak D. High entropy multicomponent WMoNbZrV alloy processed by mechanical alloying / D. Oleszak, A. Antolak-Dudka, T. Kulik // Materials Letters. – 2018. – Vol. 232. – P. 160–162. https://doi.org/10.1016/j.matlet.2018.08.060

84. Suryanarayana C. Mechanical alloying and milling / C. Suryanarayana // Progress in Materials Science – 2001. – Vol. 46. – P. 1–184. https://doi.org/10.1016/S0079-6425(99)00010-9

85. Lee S. Deep learning-based phase prediction of high-entropy alloys: Optimization, generation, and explanation / S. Lee, S. Byeon, H. Kim, H. Jin, S. Lee // Materials &Design. – 2021. – Vol. 197. – A. 109260. https://doi.org/10.1016/j.matdes.2020.109260

86. Fu X. Materials selection considerations for high entropy alloys / X. Fu, C. Schuh, E. Olivetti // Scripta Materialia. – 2017. – Vol. 138. – P. 145–150. https://doi.org/10.1016/j.scriptamat.2017.03.014

87. Sharma A. Microstructural evolution and mechanical properties of non-Cantor AlCuSiZnFe lightweight high entropy alloy processed by advanced powder metallurgy / A. Sharma, M. Oh, B. Ahn // Materials Science and Engineering: A. – 2020. – Vol. 797. – A. 140066. https://doi.org/10.1016/j.msea.2020.140066

88. Youssef K. A novel low-density, high-hardness, high entropy alloy with close-packed single-phase nanocrystalline structures / K. Youssef, A. Zaddach, C. Niu, D. Irving, C. Koch // Materials Research Lettets. – 2014. – Vol. 3. – P. 95–99. https://doi.org/10.1080/21663831.2014.985855

89. Chae M. Lightweight AlCuFeMnMgTi High Entropy Alloy with High Strength-to-Density Ratio Processed by Powder Metallurgy / M. Chae, A. Sharma, M. Oh, B. Ahn // Metals and Materials International. – 2021. – Vol. 27. – P. 629–638. https://doi.org/10.1007/s12540-020-00823-5

90. Heydari H. Computational analysis of novel AlLiMgTiX light high entropy alloys / H. Heydari, M. Tajally, A. Habibolahzadeh // Materials Chemistry and Physics. – 2022. – Vol. 280. – A. 125834. https://doi.org/10.1016/j.matchemphys.2022.125834

91. Lin S-Y. Mechanical performance and nanoindenting deformation of (AlCrTa-TiZr)NCy multi-component coatings co-sputtered with bias / S-Y. Lin, S-Y. Chang, Y-C. Huang, F-S. Shieu, J-W. Yeh // Surface and Coating Technology. – 2012. – Vol. 206. – P. 5096–5102. https://doi.org/10.1016/j.surfcoat.2012.06.035

92. Wan H. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment / H. Wan, D. Song, X. Shi, Y. Cai, T. Li, C. Chen // Journal of Materials Science & Technology. – 2021. – Vol. 60. – P. 197–205. https://doi.org/10.1016/j.jmst.2020.07.001

93. Barron P. Towards V-based high-entropy alloys for nuclear fusion applications / P. Barron, A. Carruthers, J. Fellowes, N. Jones, H. Dawson, E. Pickering // Scripta Materialia. – 2020. – Vol. 176. – P. 12–16. https://doi.org/10.1016/j.scriptamat.2019.09.028

94. Guo Y. Microstructure and properties of in-situ TiN reinforced laser cladding CoCr2FeNiTix high-entropy alloy composite coatings / Y. Guo, X. Shang, Q. Liu // Surface and Coatings Technology – 2018. – Vol. 344. – P. 353–358. https://doi.org/10.1016/j.surfcoat.2018.03.035

95. Li X. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding / X. Li, Y. Feng, B. Liu, D. Yi, X. Yang, W. Zhang, G. Chen, Y. Liu, P. Bai // Journal of Alloys Compounds. – 2019. – Vol. 788. – P. 485–494. https://doi.org/10.1016/j.jallcom.2019.02.223

96. Cheng J. Evolution of microstructure and mechanical properties of in situ synthesized TiC–TiB2/CoCrCuFeNi high entropy alloy coatings / J. Cheng, D. Liu, X. Liang, Y. Chen // Surface and Coatings Technology. – 2015. – Vol. 281. – P. 109–116. https://doi.org/10.1016/j.surfcoat.2015.09.049

97. Tsai D-C. Solid solution coating of (TiVCrZrHf)N with unusual structural evolution / D-C. Tsai, Z-C. Chang, L-Y. Kuo, T-J. Lin, T-N. Lin, F-S. Shieu // Surface and Coatings Technology. – 2013. – Vol. 217. – P. 84–87. https://doi.org/10.1016/j.surfcoat.2012.11.077

98. Chang S-Y. 4-nm thick multilayer structure of multicomponent (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects / S-Y. Chang, C-E. Li, S-C. Chiang, Y-C. Huang // Journal of Alloys Compounds. – 2012. – Vol. 515. – P. 4–7. https://doi.org/10.1016/j.jallcom.2011.11.082

99. Guo Y. A novel biomedical high-entropy alloy and its laser-clad coating designed by a cluster-plus-glue-atom model / Y. Guo, X. Li, Q. Liu // Materials & Design. – 2020. – Vol. 196. – A. 109085. https://doi.org/10.1016/j.matdes.2020.109085

100. Qiu X. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high entropy alloy coatings / X. Qiu, Y. Zhang, C. Liu // Journal of Alloys Compounds. – 2014. – Vol. 585. – P. 282–286. https://doi.org/10.1016/j.jallcom.2013.09.083

101. Nam S. Recent studies of the laser cladding of high entropy alloys./ S. Nam, C. Kim, Y-M. Kim // Journal of Welding and Joining. – 2017. – Vol. 35. – P. 58–66. https://doi.org/10.5781/JWJ.2017.35.4.9

102. Yue T. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates / T. Yue, H. Xie, X. Lin, H. Yang, G. Meng // Journal of Alloys Compounds. – 2014. – Vol. 587. – P. 588–593. https://doi.org/10.1016/j.jallcom.2013.10.254

103. Katama S. Laser assisted high entropy alloy coating on aluminum: microstructural evolution / Katakam, S. Joshi, S. Mridha, S. Mukherjee, N. Dahotre // Journal of Applied Physics. – 2014. – Vol. 116. – A. 104906. https://doi.org/10.1063/1.4895137

104. Shon Y. Laser additive synthesis of high entropy alloy coating on aluminum: corrosion behavior / Y. Shon, S. Joshi, S. Katakam, R. Rajamure, N. Dahotre // Materials Letters. – 2015. – Vol. 142. – P. 122–125. https://doi.org/10.1016/j.matlet.2014.11.161

105. Velasco S. Functional properties of ceramic-Ag nanocomposite coatings produced by magnetron sputtering / S. Velasco, A. Cavaleiro, S. Carvalho // Progress in Materials Science. – 2016. – Vol. 84. – P. 158–191. https://doi.org/10.1016/j.pmatsci.2016.09.005

106. Frey H. H.R. Handbook of Thin Film Technology / H. Frey, H. Khan. – Berlin: Springer, 2010. – 380 p.

107. Lai C-H. Mechanical and tribological properties of multi element (AlCrTaTiZr)N coatings / C-H. Lai, K-H. Cheng, S-J. Lin, J-W. Yeh // Surface and Coatings Technology. – 2008. – Vol. 202. – P. 3732–3738. https://doi.org/10.1016/j.surfcoat.2008.01.014

108. Luo D. Design and Characterization of self-lubricating refractory high entropy alloy based multilayered films / D. Luo, Q. Zhou, W. Ye, C. Greiner, Y. He, H. Wang // ACS Applied Materials & Interfaces. – 2021. – Vol. 13. – P. 55712–55725. https://doi.org/10.1021/acsami.1c16949

109. Lu P. Computational materials design of a corrosion resistant high entropy alloy for harsh environments / P. Lu, J. Saal, G. Olson, T. Li, O. Swanson, G. Frankel, A. Gerard, K. Quiambao, J. Scully // Scripta Materialia. – 2018. – Vol. 153. – P. 19–22. https://doi.org/10.1016/j.scriptamat.2018.04.040

110. Dou D. Coatings of FeAlCoCuNiV high entropy alloy / D. Dou, X. Li, Z. Zheng, J. Li // Surface Engineering. – 2016. – Vol. 32. – P. 766–770. https://doi.org/10.1080/02670844.2016.1148380

111. Zhao S. Mechanical and high-temperature corrosion properties of AlTiCrNiTa high entropy alloy coating prepared by magnetron sputtering for accident-tolerant fuel cladding / S. Zhao, C. Liu, J. Yang, W. Zhang, L. He, R. Zhang, H. Yang, J. Wang, J. Long, H. Chang // Surface and Coatings Technology. – 2021. – Vol. 417. – A. 127228. https://doi.org/10.1016/j.surfcoat.2021.127228

112. Padamata S. Magnetron Sputtering High-Entropy Alloy Coatings: A Mini-Review / S. Padamata, A. Yasinskiy, V. Yanov, G. Saevarsdottir // Metals. – 2022. – Vol. 12. – A. 319. https://doi.org/10.3390/met12020319

113. Yurov M. High entropic coatings FeCrNiTiZrAl and their properties / V. Yurov, A. Berdibekov, N. Belgibekov, K. Makhanov // Bulletin of the university of Karaganda-Physics. – 2021. – Vol. 3. – P. 101–114. https://doi.org/10.31489/2021Ph3/101-114

114. Lai C-H. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings / C-H. Lai, S-J. Lin, J-W. Yeh, S-Y. Chang // Surface and Coatings Technology. – 2006. – Vol. 201. – P. 3275–3280. https://doi.org/10.1016/j.surfcoat.2006.06.048

115. Chen T. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering / T. Chen, T. Shun, J. Yeh, M. Wong // Surface and Coatings Technology. – 2004. – Vol. 188–189. – P. 193–200. https://doi.org/10.1016/j.surfcoat.2004.08.023

116. Ren B. Structure and mechanical properties of multielement (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering./ B. Ren, Z. Shen, Z. Liu // Journal of Alloys Compounds. – 2013. – Vol. 560. – P. 171–176. https://doi.org/10.1016/j.jallcom.2013.01.148

117. Tsai D-C. Oxidation resistance and characterization of (AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering / D-C. Tsai, M-J. Deng, Z-C. Chang, B-H. Kuo, E-C. Chen, S-Y. Chang, F-S. Shieu // Journal of Alloys Compounds. – 2015. – Vol. 647. – P. 179–188. https://doi.org/10.1016/j.jallcom.2015.06.025

118. Zhang W. Preparation, structure, and properties of high-entropy alloy multilayer coatings for nuclear fuel cladding: A case study of AlCrMoNbZr/(AlCrMoNbZr)N / W. Zhang, R. Tang, Z. Yang, C. Liu, H. Chang, J. Yang, J. Liao, Y. Yang, N. Liu // Journal of Nuclear Materials. – 2018. – Vol. 512. – P. 15–24. https://doi.org/10.1016/j.jnucmat.2018.10.001

119. Li H. Controllable electrochemical synthesis and magnetic behaviors of Mg–Mn–Fe–Co–Ni–Gd alloy films / H. Li, H. Sun, C. Wang, B. Wei, C. Yao, Y. Tong, H. Ma // Journal of Alloys Compounds. – 2014. – Vol. 598. – P. 161–165. https://doi.org/10.1016/j.jallcom.2014.02.051

120. Soare V. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films / V. Soare, M. Burada, I. Constantin, D. Mitrica, V. Badilita, A. Caragea, M. Tarcolea // Applied Surface Science. – 2015. – Vol. 358. – P. 533–539. https://doi.org/10.1016/j.apsusc.2015.07.142

121. Yao C. Facile preparation and magnetic study of amorphous Tm-Fe-Co-Ni-Mn multicomponent alloy nanofilm / C. Yao, B. Wei, P. Zhang, X. Lu, P. Liu, Y. Tong // Journal of Rare Earths. – 2011. – Vol. 29. – P. 133–137. https://doi.org/10.1016/S1002-0721(10)60418-8

122. Liu L. Effects of temperature and atmosphere on microstructure and tribological properties of plasma sprayed FeCrBSi coatings / L. Liu, J-K. Xiao, X. Wei, Y. Ren, G. Zhang, C. Zhang // Journal of Alloys Compounds. – 2018. – Vol. 753. – P. 586–594. https://doi.org/10.1016/j.jallcom.2018.04.247

123. Wang R. Effect of spraying parameters on the crystallinity and microstructure of solution precursor plasma sprayed coatings / R. Wang, J. Duan, F. Ye // Journal of Alloys Compounds. – 2018. – Vol. 766. – P. 886–893. https://doi.org/10.1016/j.jallcom.2018.06.331

124. Rakhadilov B. Influence of pulse plasma treatment on the phase composition and microhardness of detonation coatings based on Ti-Si-C / B. Rakhadilov, D. Buitkenov, M. Adilkhanova, Zh. Sagdoldina, Sh. Kurbanbekov // Bulletin of Karaganda University. – 2021. – Vol. 2. – P. 33–39. https://doi.org/10.31489/2021Ph2/33-39.

125. Tian L. Microstructure, Microhardness, and Wear Resistance of AlCoCrFeNiTi/Ni60 Coating by Plasma Spraying / L. Tian, Z. Feng, W. Xiong // Coatings. – 2018. – Vol. 8. – A. 112. https://doi.org/10.3390/coatings8030112

126. Jin G. Microstructure and Tribological Properties of In Situ Synthesized TiN Reinforced Ni/Ti Alloy Clad Layer Prepared by Plasma Cladding Technique / G. Jin, Y. Li, H. Cui, X. Cui, Z. Cai // Journal of Materials Engineering and Performance. – 2016. – Vol. 25. – P. 2412–2419. https://doi.org/10.1007/s11665-016-2058-8

127. Sudha C. Microchemical and microstructural studies in a PTA weld overlay of Ni–Cr–Si–B alloy on AISI 304 L stainless steel / C. Sudha, P. Shankar, R. Rao, R. Thirumurugesan, M. Vijayalakshmi, R. Baldev // Surface and Coatings Technology. – 2008. – Vol. 202. – P. 2103– 2112. https://doi.org/10.1016/j.surfcoat.2007.08.063

128. Löbel M. Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOF / M. Löbel, T. Lindner, T. Mehner, L. Thomas // Coatings. – 2017. – Vol. 7. – A. 144. https://doi.org/10.3390/coatings7090144

129. Hsu W-L. On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating / W-L. Hsu, H. Murakami, J-W. Yeh, A-C. Yeh, K. Shimoda // Surface and Coatings Technology. – 2017. – Vol. 316. – P. 71–74. https://doi.org/10.1016/j.surfcoat.2017.02.073

130. Chen L. Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures / L. Chen, K. Bobzin, Z. Zhou, L. Zhao, M. Ote, T. Königstein, Z. Tan, D. He // Surface and Coatings Technology. – 2019. – Vol. 358. – P. 215–222. https://doi.org/10.1016/j.surfcoat.2018.11.052

131. Huang C. Microstructural evolution and mechanical properties enhancement of a cold-sprayed CuZn alloy coating with friction stir processing / C. Huang, W. Li, Y. Feng, Y. Xie, M-P. Planche, H. Liao, G. Montavon // Materials Characterization. – 2017. – Vol. 125. – P. 76– 82. https://doi.org/10.1016/j.matchar.2017.01.027

132. Yin S. Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying/ S. Yin, W. Li, B. Song, X. Yan, M. Kuang, Y. Xu, K. Wen, R. Lupoi // Journal of Materials Science & Technology. – 2019. – Vol. 35. – P. 1003–1007. https://doi.org/10.1016/j.jmst.2018.12.015

133. Yang K. Cold sprayed AA2024/Al2O3 metal matrix composites improved by friction stir processing: Microstructure characterization, mechanical performance and strengthening mechanisms / K. Yang, W. Li, P. Niu, X. Yang, Y. Xu // Journal of Alloys and Compounds. – 2018. – Vol. 736. – P. 115–123. https://doi.org/10.1016/j.jallcom.2017.11.132

134. Huang C. Effect of tool rotation speed on microstructure and microhardness of friction-stir-processed cold-sprayed SiCp/Al5056 composite coating/ C. Huang, W. Li, Z. Zhang, M. Fu, M. Planche, H. Liao, G. Montavon // Journal of Thermal Spray Technology. – 2016. – Vol. 25. – P. 1357–1364. https://doi.org/10.1007/s11666-016-0441-5

135. Liao W-B. Microstructures and mechanical properties of CoCrFeNiMn high-entropy alloy coatings by detonation spraying / W-B. Liao, Z-X. Wu, W. Lu, M. He, T. Wang, Z. Guo, J. Huang // Intermetallics. – 2021. – Vol. 132. – A. 107138. https://doi.org/10.1016/j.intermet.2021.107138

136. Ulianitsky V. Structure and composition of Fe-Co-Ni and Fe-Co-Ni-Cu coatings obtained by detonation spraying of powder mixtures / V. Ulianitsky, D. Rybin, A. Ukhina, B. Bokhonov, D. Dudina, M. Samodurova, E. Trofimov // Materials Letters. – 2021. – Vol. 290. – A. 129498. https://doi.org/10.1016/j.matlet.2021.129498

137. Batraev I. A Feasibility Study of High-Entropy Alloy Coating Deposition by Detonation Spraying Combined with Laser Melting / I. Batraev, V. Ulianitsky, A. Sova, M. Samodurova, E. Trofimov, K. Pashkeev, A. Malikov, D. Dudina, A. Ukhina // Materials. – 2022. – Vol. 15. – A. 4532. https://doi.org/10.3390/ma15134532


Review

For citations:


Kambarov Ye.Ye., Uazyrkhanova G.K., Rutkowska-Gorczyca M., Kussainov A.Ye. OVERVIEW OF THE HIGH-ENTROPY ALLOYS CONCEPT. NNC RK Bulletin. 2023;(1):25-39. https://doi.org/10.52676/1729-7885-2023-1-25-39

Views: 1464


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-7516 (Print)
ISSN 1729-7885 (Online)